Optimal domain for the Hardy operator
نویسندگان
چکیده
We study the optimal domain for the Hardy operator considered with values in a rearrangement invariant space. In particular, this domain can be represented as the space of integrable functions with respect to a vector measure defined on a δ-ring. A precise description is given for the case of the minimal Lorentz spaces.
منابع مشابه
Bilateral composition operators on vector-valued Hardy spaces
Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$. We investigate some operator theoretic properties of bilateral composition operator $C_{ph, T}: f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq +infty$. Compactness and weak compactness of $C_{ph, T}$ on $H^p(X)$ are characterized an...
متن کاملOptimal Sobolev Embeddings on R
The aim of this paper is to study Sobolev-type embeddings and their optimality. We work in the frame of rearrangement-invariant norms and unbounded domains. We establish the equivalence of a Sobolev embedding to the boundedness of a certain Hardy operator on some cone of positive functions. This Hardy operator is then used to provide optimal domain and range rearrangement-invariant norm in the ...
متن کاملSpectrum and essential spectrum of linear combinations of composition operators on the Hardy space H2
Let -----. For an analytic self-map --- of --- , Let --- be the composition operator with composite map --- so that ----. Let --- be a bounded analytic function on --- . The weighted composition operator --- is defined by --- . Suppose that --- is the Hardy space, consisting of all analytic functions defined on --- , whose Maclaurin cofficients are square summable. .....
متن کاملA more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function
By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...
متن کاملAn extended multidimensional Hardy-Hilbert-type inequality with a general homogeneous kernel
In this paper, by the use of the weight coefficients, the transfer formula and the technique of real analysis, an extended multidimensional Hardy-Hilbert-type inequality with a general homogeneous kernel and a best possible constant factor is given. Moreover, the equivalent forms, the operator expressions and a few examples are considered.
متن کامل